All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Assessing genetic divergence in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism markers

Author(s): F. Zhang Y.Y. Ge W.Y. Wang X.L. Shen X.Y. Yu

Conventional hybridization and selection techniques have aided the development of new ornamental crop cultivars. However, little information is available on the genetic divergence of bromeliad hybrids. In the present study, we investigated the genetic variability in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism (SRAP) markers. The morphological analysis showed that the putative hybrids were intermediate between both parental species with respect to inflorescence characteristics. The 16 SRAP primer combinations yield 265 bands, among which 154 (57.72%) were polymorphic. The genetic similarity was an average of 0.59 and ranged from 0.21 to 0.87, indicating moderate genetic divergence among the hybrids. The unweighted pair group method with arithmetic average (UPGMA)-based cluster analysis distinguished the hybrids from their parents with a genetic distance coefficient of 0.54. The cophenetic correlation was 0.93, indicating a good fit between the dendrogram and the original distance matrix. The two-dimensional plot from the principal coordinate analysis showed that the hybrids were intermediately dispersed between both parents, corresponding to the results of the UPGMA cluster and the morphological analysis. These results suggest that SRAP markers could help to identify breeders, characterize F1 hybrids of bromeliads at an early stage, and expedite genetic improvement of bromeliad cultivars. Conventional hybridization and selection techniques have aided the development of new ornamental crop cultivars. However, little information is available on the genetic divergence of bromeliad hybrids. In the present study, we investigated the genetic variability in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism (SRAP) markers. The morphological analysis showed that the putative hybrids were intermediate between both parental species with respect to inflorescence characteristics. The 16 SRAP primer combinations yield 265 bands, among which 154 (57.72%) were polymorphic. The genetic similarity was an average of 0.59 and ranged from 0.21 to 0.87, indicating moderate genetic divergence among the hybrids. The unweighted pair group method with arithmetic average (UPGMA)-based cluster analysis distinguished the hybrids from their parents with a genetic distance coefficient of 0.54. The cophenetic correlation was 0.93, indicating a good fit between the dendrogram and the original distance matrix. The two-dimensional plot from the principal coordinate analysis showed that the hybrids were intermediately dispersed between both parents, corresponding to the results of the UPGMA cluster and the morphological analysis. These results suggest that SRAP markers could help to identify breeders, characterize F1 hybrids of bromeliads at an early stage, and expedite genetic improvement of bromeliad cultivars.