All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Effects of eplerenone on the activation of matrix metalloproteinase-2 stimulated by high glucose and interleukin-1�² in human cardiac fibroblasts

Author(s): J.F. Chi, H. Uzui, H.Y. Guo, T. Ueda and J.D. Lee

The aim of this study was to determine the influence of high glucose (HG) and interleukin (IL)-1β on human cardiac fibroblast (HCF) functions, and to evaluate the effects of eplerenone in these responses. HCFs were cultured in normal or HG media in the absence or presence of IL-1β and/or eplerenone. We assessed matrix metalloproteinase-2 (MMP-2) activity in the supernatant by in-gel zymography, and determined mRNA expression levels of MMP-2 and tissue inhibitor of metalloproteinase-2 (TIMP-2) by reverse transcription-polymerase chain reaction. Equimolar D-mannitol was used as an osmotic control. HG stimulated MMP-2 activity and promoted MMP-2 mRNA synthesis. Increased effects were also observed in equimolar D-mannitol treatments, but these effects were weaker compared to those of glucose. The combination of HG and IL-1β resulted in a 2-fold increase in MMP-2 activity and mRNA expression compared with HG or IL-1β alone. Increases in HG- or IL-1β-induced MMP-2 activity and mRNA expression were blocked by eplerenone. Neither HG nor IL-1β affected TIMP-2 mRNA expression. HG increased MMP-2 activity by regulation of MMP- 2 mRNA expression in HCFs through osmotic and non-osmotic pathways. Synergistic effects of IL-1β added to HG media on MMP-2 activity and mRNA expression were observed in HCFs. Eplerenone normalized the effect of MMP-2 activity and HG- or IL-1β-induced expression in HCFs.