The wavelets have become increasingly popular in the field of bioinformatics due to their capacity in multiresolution analysis and space-frequency localization; the latter particularity is acquired due to a moving window that runs through the analyzed space. As a feature, they have a better ability to capture hidden components of biological data and an efficient link between biological systems and the mathematical objects used to describe them. The decomposition of signals/sequences at different levels of resolution allows obtaining distinct characteristics in each level. The energy (variance) obtained at each level provides a new set of information that can be used to search similarities between sequences. We show that the behavior of GC-content sequence can be succinctly described regarding the non-decimated wavelet transform, and we indicate how this characterization can be used to improve clustering of the similar strains of the genome of the Mycobacterium tuberculosis, having a very efficient level of detail. The clustering analysis using the energy obtained at each level of the analyzed sequences was essential to verify the dissimilarity of the sequences.
Genetics and Molecular Research received 74024 citations as per google scholar report