All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Increased miR-155-5p expression in dermal mesenchymal stem cells of psoriatic patients: comparing the microRNA expression profile by microarray

Author(s): R.X. Hou, R.F. Liu, X.C. Zhao, Y.R. Jia, P. An, Z.P. Hao, J.Q. Li, X.H. Li, G.H. Yin and K.M. Zhang

Mesenchymal stem cells (MSCs) have pleiotropic immuno-modulatory effects and pro-angiogenic ability, leading to the presumption that MSCs may be involved in the pathogenesis of many inflammatory or autoimmune disorders, including psoriasis. In a previous study, we reported the specific gene expression profile ofdermal MSCs from psoriasis. Inflammation- and angiogenesis-related genes, such as lipopolysaccharide-induced tumor necrosis factor-alpha transcription factor (LITAF), dual-specificity protein phosphatase 1 (DUSP1), vascular endothelial growth factor α (VEGFα), and insulin-like growth factor-binding protein-5 (IGFBP5), are abnormally expressed in psoriatic dermal MSCs. As a key regulator of gene expression, miRNA are involved in a wide variety of biological processes; in fact, several miRNAs have been implicated in the development and progression of inflammatory or autoimmune disorders. In this study, we compared the miRNA expression profiles of dermal MSCs from patients with psoriasis to those in MSCs from normal individuals by microarray, and found that the pro-inflammatory miRNA miR-155 was significantly overexpressed in psoriatic MSCs (2.44 fold, P < 0.001). Additionally, the expression of miR-155 target gene TAB2 (8.47 ± 1.55 vs 6.38 ± 2.10, P < 0.01,) and the downstream gene iNOS (5.26 ± 2.58 vs 3.73 ± 1.89, P < 0.05) was found to be inhibited in psoriatic dermal MSCs by real-time PCR. Therefore, we speculated that the elevation in miR-155 levels may be an indicator of, or a key regulatory pathway in, the pathogenesis of psoriasis, resulting in functionally impaired dermal MSCs.