Bovine spongiform encephalopathy (BSE) is a fatal disorder in cattle characterized by progressive neurodegeneration of the central nervous system. We investigated the molecular mechanisms involved in neurodegeneration during prion infection through the identification of genes that are differentially expressed (DE) between experimentally infected and non-challenged cattle. Gene expression of caudal medulla from control and orally infected animals was compared by microarray analysis using 24,000 bovine oligonucleotides representing 16,846 different genes to identify DE genes associated with BSE disease. In total, 182 DE genes were identified between normal and BSE-infected tissues (>2.0-fold change, P < 0.01); 81 DE genes had gene ontology functions, which included synapse function, calcium ion regulation, immune and inflammatory response, apoptosis, and cytoskeleton organization; 13 of these genes were found to be involved in 26 different Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression of five DE genes associated with synapse function (tachykinin, synuclein, neuropeptide Y, cocaine, amphetamine-responsive transcript, and synaptosomal-associated protein 25 kDa) and three DE genes associated with calcium ion regulation (parvalbumin, visinin-like, and cadherin) was further validated in the medulla tissue of cattle at different infection times (6, 12, 42, and 45 months post-infection) by qRT-PCR. These data will contribute to a better understanding of the molecular mechanisms of neuropathology in bovine species.
Genetics and Molecular Research received 56184 citations as per google scholar report