Imidazole derivative KK-42 is a well-known regulator of insect growth. KK-42 pretreatment has been shown to promote the survival of Macrobrachium nipponense infected with Aeromonas hydrophila, possibly via activation of superoxide dismutase (SOD). In this study, the cytMnSOD gene was cloned from the hepatopancreas of M. nipponense using the rapid amplification of cDNA ends technique. The full-length cDNA of cytMnSOD was 1233 bp long, and the open reading frame was 858 bp long, encoding a 286-aa protein with a 60-aa leader sequence. The calculated molecular mass of the translated cytMnSOD protein was 31.33 kDa, with an estimated isoelectricpoint of 5.62. cytMnSOD contained two N-glycosylation sites, four conserved amino acids responsible for binding manganese, and a manganese SOD domain (DVWEHAYY). Real-time RT-PCR analysis showed that cytMnSOD was expressed in all tissues examined with the highest expression observed in the hepatopancreas. Levels of the cytMnSOD transcript in the hepatopancreas were highest in stage C of the molting cycle. Real-time PCR analysis revealed that cytMnSOD expression increased significantly 3, 6, and 12 h after KK-42 treatment, with simultaneous increases in SOD activity from 6 to 12 h. Our results demonstrate that cytMnSOD expression and SOD activity may be induced by KK-42, which may represent one of the molecular mechanisms through which KK-42 promotes increased survival of prawns infected with A. hydrophila.
Genetics and Molecular Research received 56184 citations as per google scholar report