With the changes in spinning technology, technological cotton traits, such as fiber length, fiber uniformity, fiber strength, fineness, fiber maturity, percentage of fibers, and short fiber index, are of great importance for selecting cotton genotypes. However, for accurate discrimination of genotypes, it is important that these traits are evaluated with the best possible accuracy. The aim of this study was to determine the number of measurements (repetitions) needed to accurately assess technological traits of cotton genotypes. Seven experiments were conducted in four Brazilian States (Ceará, Rio Grande do Norte, Goiás, and Mato Grosso do Sul). We used nine brown and two white colored fiber lines in a randomized block design with four replications. After verifying the assumptions of residual normality and homogeneity of variances, analysis of variance was performed to estimate the repeatability coefficient and calculating the number ofrepetitions. Trials with four replications were found to be sufficient to identify superior cotton genotypes for all measured traits except short fiber index with a selective accuracy >90% and at least 81% accuracy in predicting their actual value. These results allow more accurate and reliable results in future researches with evaluating technological traits in cotton genotypes.
Genetics and Molecular Research received 74024 citations as per google scholar report