Demand for the development of cassava varieties with different native starches has guided the search for these characteristics in the germplasm of Manihot esculenta Crantz. Therefore, the objective of this study was to estimate the genetic diversity of cassava accessions for root and starch granule characteristics to guide the future industrial application of this species. Starches from 56 accessions were evaluated for the number of granules in 1 g of starch (NTG), area (AG, μm2), length (LG, μm), width (WG, μm), starch granule roundness (Round), dry matter content in the roots (DMC, %), pulp color (PulCo), and cyanogenic compounds (HCN). Images captured by light microscopy were used to determine the average phenotypic values, and these were further analyzed by principal component analysis (PCA) considering mixed data (quantitative and qualitative). Significant differences between the cassava accessions for all traits measured revealed wide variability in starch granule characteristics. Four diversity groups with better fitness for the classification of cassava accessions based on PulCo were identified, in comparison with HCN. Accessions with differential starch characteristics were identified, and crossings for the generation of segregating populations in order to obtain table and industry varieties have been proposed.
Genetics and Molecular Research received 74024 citations as per google scholar report