Quantitative real-time polymerase chain reaction (qRT-PCR) is an important technology used to analyze gene-expression levels. Reference genes, which are assumed to be expressed consistently across various developmental stages and in different tissues, were selected for expression level analysis. Using digital gene expression technology, we selected nine reference genes (18S, EF, CYCOL, SAND, GAPDH, ACTIN, BHLH, TIP, and Clathrin) as candidate reference genes for further study. Using three different analysis methods (GeNorm, NormFinder, and BestKeeper), a total of 144 lily (Lilium x formolongi “Raizan 3”) samples were analyzed. The samples were collected from four different tissues under various developmental stages. In addition, leaves treated with different plant hormones were collected and analyzed. The data showed that the stability of the nine reference genes differed among samples, but TIP, EF, Clathrin, and BHLH could be identified as the most stable genes overall. In addition, the relative expression level of LfFT in different lily tissues with the competence to flower was also analyzed to verify the selected reference genes. This study constitutes an important source for selecting reference genes when analyzing the expression patterns of flowering time and floral development regulation genes in lily cultivars.
Genetics and Molecular Research received 56184 citations as per google scholar report