All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
Research Article

Analysis of Mendelian inheritance and genetic linkage in microsatellite loci of Eucalyptus urophylla S.T. Blake

Accepted: November 30, -0001
Published: August 17, 2017
Genet.Mol.Res. 16(3): gmr16039713
DOI: 10.4238/gmr16039713

Abstract

Eucalyptus urophylla is an important species in the Brazilian forest sector due to its rapid growth rates and resistance to disease. The aim of this study was to verify Mendelian inheritance, genetic linkage, and genotypic disequilibrium for 15 microsatellite loci, with the goal of producing a robust set of genetic markers. Mendelian inheritance and genetic linkage analyses were carried out using genotypes from maternal trees, and their open-pollinated seeds and genotypic disequilibrium were assessed using adult trees. By comparing heterozygous maternal genotypes and their seeds, we found no significant deviations from the expected 1:1 Mendelian segregation and the expected 1:1:1:1 segregation hypothesis for pairwise loci. For adult trees, we did not find strong evidence of genotypic imbalance for pairwise loci. Our results indicated that the analyzed set of microsatellite loci could be used to carry out analyses of genetic diversity, mating system, and parentage in E. urophylla.

Introduction

The impact of classic quantitative genetics on Brazil’s high productivity levels in Eucalyptus planted forests is indisputable. However, in the last 25 years, possibilities for further progress have arisen due to technological advancements in molecular markers, sequencing methods, and genetic engineering (Harfouche et al., 2014; Barabaschi et al., 2016). Single sequence repeats (SSR) have been used since 1996 as an auxiliary tool to inform genetic improvement and conservation plans (Byrne et al., 1996), providing essential information on levels of genetic diversity within and among populations, inbreeding, effective population size, breeding system, and gene flow. Among the species cultivated in tropical climate regions, Eucalyptus urophyllaplanted commercially as a pure species or as a hybrid, mainly with E. grandis (Hodge and Dvorak, 2015). The wood can be used in civil construction and pulp and cellulose production (Carvalho et al., 1998). The species is also resistant to diseases such as eucalyptus rust (Puccinia psidii), wilt (Ceratocystis fimbriata), and cancers (Chrysoporthe cubensis and Coniothyrium zuluense) (Carvalho et al., 1998).

SSR markers have been used extensively due to their codominant inheritance and high locus polymorphism (Grattapaglia et al., 2012; Randall et al., 2015). However, it is critical to confirm if SSR loci employed in population genetic analyses are in fact genetic markers. These markers cannot suffer from segregation distortions and genetic association between loci, as this would negate the principle of random association between alleles of different loci and generate redundant information. Thus, we assess the Mendelian inheritance, genetic linkage, and genotypic disequilibrium for 15 SSR loci of E. urophylla to develop a robust set of genetic markers for genetic diversity, inbreeding, and parentage analyses.

Materials and Methods

Two seed orchards of E. urophylla (SO1, SO2) and a progeny test (PT) were used for the analyses. The study populations are installed in the Teaching, Research and Outreach Farm (FEPE), Ilha Solteira Faculty of Engineering (FEIS/UNESP), in the municipality of Selvíria, Mato Grosso do Sul State, Brazil. For DNA analysis, we sampled leaves from 79 and 298 adult trees in SO1 and SO2, respectively. In PT, we sampled 605 seedlings (denominated seeds) from 23 mother trees. The extraction and purification of the DNA were performed based on the CTAB method (Doyle and Doyle, 1987) and amplification was performed using PCR (polymerase chain reaction), with minor modifications to the protocol (see Faria et al., 2011). For the genotyping of individuals, we used EMBRA microsatellite markers (Brondani et al., 1998, 2006): 15 SSR loci for SO2 and PT; and 13 common SSR loci for SO1. The genetic characterization was performed in multiplex systems, with multi-fluorescence detection, in an ABI 3100XL automatic capillary sequencer. Raw genotypic data (electropherograms) were exported from the sequencer using the Genotyper software (Applied Biosystems) and adjusted to unity using the TANDEM software (Matschiner and Salzburger, 2009). Molecular analyses were performed at the Hereditas/Genomax Laboratory in Brasília, Brazil.

To investigate the Mendelian inheritance of the SSR loci, we compared maternal heterozygous mother tree genotypes with their seeds, using the method described by Gillet and Hattemer (1989). The assumptions of the method are that the loci have regular segregation and their alleles follow Mendelian inheritance patterns, which are based on the following conditions: i) regular meiotic segregation during ovule production; ii) random fertilization of ovules by each type of pollen; iii) absence of differential selective viability in the progenies prior to the investigation by genetic markers; iv) a co-dominant relationship between alleles. The method further requires that all progeny of a tree possess a maternal allele. In cases of a heterozygous mother tree (e.g., AiAj, i≠j), the following are required: a) each one within progeny must have one allele of the maternal tree, Ai or Aj; b) the number of heterozygous progeny AiAj (nij) must be equal to the sum of the number of homozygous progeny AiAi (nii) and AjAj (njj): nij = nii + njj; and c) the number of heterozygous progeny AiAk (nik) must be equal to the number of heterozygous progeny AjAk (njk), or nik = njk, in other words, k?i, j. The observed segregation of each progeny from a heterozygous maternal tree for a given locus was statistically compared to that expected for the segregation hypothesis of 1:1, using the G-test (Sokal and Rohlf, 1981):

equation (Equation 1)

where ln is the natural logarithm, E(n1) is the expected number of offspring genotypes AiAj (nij) and AiAi+AjAj(nii+njj): E(n1) = 0.5(nij+ nii+ njj), or:

equation (Equation 2)

where E(n2) is the expected number of genotypes for alleles AiAk (nik) and AjAk (njk): E(n2) = 0.5(nik+ njk). To avoid false positives, the G-test was determined only when n1 and n2 were =15. Deviation from the G-test between the observed and expected segregation was determined as statistically significant using the Bonferroni correction for multiple comparisons (95%, a = 0.05).

To determine if the loci were genetically linked, we tested pairs of loci using genetic information from mother trees that were doubly heterozygous for two loci (AiAj, BlBm). The segregation was recorded in their progeny. In this case, the null hypothesis (HO) was a normal Mendelian segregation of 1:1:1:1. The normal segregation hypothesis between pairs of loci was accepted or rejected based on a maximum likelihood G-test (Sokal and Rohlf, 1981) performed for each progeny:

equation (Equation 3)

where nil, nim, njl, and njm are the observed numbers of phenotypes AiBl, AiBm, AjBl, and AjBm, respectively, and E(n) is the expected number of each genotype AiBl, AiBm, AjBl, and AjBm, calculated by E(n) = 0.25(nil + nim + njl + njm). Again, we applied the Bonferroni correction for multiple comparisons (95%, a = 0.05) to avoid false positives.

The genotypic disequilibrium test between pairwise loci was only performed for adult samples. Estimates of gene frequencies based on open-pollinated progeny arrays are biased because each progeny has at least one maternal allele, resulting in genotypic disequilibrium. This analysis was carried out using the FSTAT 2.9.3.2 software (Goudet, 2002). The probabilities of the significance test were obtained by permutation of alleles among individuals, associated with a Bonferroni correction for multiple comparisons (95%, a = 0.05).

Results

No deviation from 1:1 Mendelian segregation was detected for 13 of the 15 microsatellite loci (86.6%) analyzed for progenies of heterozygous maternal trees (Table 1). Significant deviations were identified in two cases: EMBRA2 (18.29) for tree 95 and EMBRA63 (12.67) for trees 10 and 155. Of the 733 G-tests carried out for pairwise loci, only 26 (3.5%) were significantly different than expected under the hypothesis of 1:1:1:1 independent Mendelian segregation (Table 2). As the deviations were observed in different families, our results do not provide solid evidence of genetic linkage between the loci (Table 3). Considering the two seed orchards, only 5.8% of the pairwise loci were significant for genotypic disequilibrium. In both orchards, significance was found between the following loci: EMBRA681 x EMBRA2 and EMBRA204 x EMBRA210.

  Mother n1 nij : niinjj G1 n2 nik : njk G2 Mother n1 nij : niinjj G1 n2 nik : njk G2
  EMBRA2             EMBRA12              
10, 21, 86 66 26:40:00 2.99 10 5:05 NE 10, 212 18 11:07 0.9 41 14:27 4.19  
20, 45 40 18:22 0.04 20 15:05 5.25 20 11 6:05 NE 19 11:08 0.48  
55 21 14:07 2.38 6 6:00 NE 45 18 10:08 0.22 12 7:05 NE
95 7 4:03 NE 23 21:02 18.29* 55 19 8:11 0.48 8 2:06 NE
104 17 7:10 0.53 8 8:00 NE 86, 95, 458, 2473 50 24:26:00 0.08 43 24:19:00 0.58  
116 23 13:10 0.39 7 3:04 NE 101 26 16:10 1.4 4 0:04 NE
155 10 5:05 NE 20 14:06 3.29 104 7 5:02 NE 18 13:05 3.68  
212, 2612 38 13:25 3.86 20 14:06 3.29 116 18 10:08 0.22 12 3:09 NE
214 11 2:09 NE 19 14:05 4.44 118 11 8:03 NE 17 4:13 5.02  
  EMBRA3             155, 2612 25 18:07 5.01 31 14:17 0.29  
1 20 9:11 0.2 6 2:04 NE 214 6 2:04 NE 24 10:14 0.67  
10, 86, 155 12 6:06 NE 67 46:21:00 9.56 533 11 8:03 NE 19 6:13 2.64  
20, 2612 18 9:09 0 41 19:22 0.22 EMBRA28              
21, 513 9 0:09 NE 47 23:24 0.02 1 19 9:10 0.05 6 5:01 NE
45 6 1:05 NE 24 15:09 1.52 10 12 6:06 NE 18 4:14 5.88  
55 4 2:02 NE 23 16:07 3.62 21 2 1:01 NE 24 8:16 2.72  
95 3 1:02 NE 27 19:08 4.61 45 19 12:07 1.33 11 2:09 NE
104, 236 26 11:15 0.62 22 16:06 4.72 55 4 3:01 NE 23 10:13 0.39  
116 11 3:08 NE 19 10:09 0.05 101 22 15:07 2.98 8 7:01 NE
  EMBRA10             104 7 3:04 NE 18 11:07 0.9  
533 19 9:10 0.05 11 5:06 NE 116 11 6:05 NE 19 8:11 0.48  
2612 6 4:02 NE 22 11:11 0 155 17 5:12 2.97 13 8:05 NE
  EMBRA11             212 2 0:02 NE 28 17:11 1.3  
10 12 5:07 NE 18 9:09 0 214 10 0:10 NE 20 12:08 0.8  
20 15 6:09 0.6 15 10:05 1.7 236 6 2:04 NE 17 9:08 0.06  
45, 86 35 22:13 2.34 15 8:07 0.07 241 13 6:07 NE 16 8:08 0  
55 16 11:05 2.31 11 2:09 NE 458 9 4:05 NE 21 13:08 1.2  
  EMBRA38             EMBRA157              
21 7 0:07 NE 19 11:08 0.48 2612 18 4:14 5.88 9 4:05 NE
45 22 11:11 0 8 5:03 NE EMBRA204              
55, 65, 95, 101, 104 95 47:46:00 0.01 37 18:21 0.23 10 18 6:12 2.04 12 7:05 NE
86, 118 14 10:14 NE 25 11:14 0.36 20, 2612 30 10:20 3.4 30 12:18 1.21  
116, 241 42 23:19 0.38 18 7:11 0.9 21 5 4:01 NE 21 10:11 0.05  
155 23 9:14 1.1 7 5:02 NE 45 23 7:16 3.62 7 4:03 NE
212 2 0:02 NE 27 10:17 1.84 95, 212 11 6:05 NE 48 17:31 4.14  
214 18 5:13 3.68 10 5:05 NE 116 11 8:03 NE 19 6:13 2.64  
  EMBRA63             118 18 10:08 0.22 12 12:00 NE
10, 155 35 11:24 4.95 25 4:21 12.67* 155 19 7:12 1.33 11 6:05 NE
21, 45, 101, 118 103 65:38:00 7.16 13 10:03 NE 214, 533 36 17:19 0.11 24 18:06 6.28  
55 21 7:14 2.38 6 2:04 NE 458 6 2:04 NE 24 9:15 1.52  
95. 241 46 27:19:00 1.4 14 10:04 NE EMBRA210              
104 6 1:05 NE 19 11:08 0.48 21 8 5:03 NE 19 8:11 0.48  
2612 21 8:13 1.2 7 2:05 NE 45 18 12:06 2.04 13 7:06 NE
  EMBRA128             55 7 5:02 NE 20 9:11 0.2  
1, 116, 214 57 21:36 3.99 27 14:13 0.04 95 5 3:02 NE 23 8:15 2.16  
10 6 0:06 NE 24 9:15 1.52 116 9 2:07 NE 22 7:15 2.98  
21 16 4:12 4.19 10 4:06 NE 118 19 10:09 0.05 11 4:07 NE
118 11 3:08 NE 19 4:15 6.78 155 14 7:07 NE 16 9:07 0.25  
212 23 5:18 7.8 7 4:03 NE 212 13 10:03 NE 15 6:09 0.6  
  EMBRA157             214 18 9:09 0 12 12:00 NE
20, 45, 118, 212 72 23:49 9.6 47 23:24 0.02 533 20 12:08 0.8 10 4:06 NE
21, 116 49 16:33 6.02 7 2:05 NE            
65 17 4:13 5.02 2 0:02 NE              
95 6 3:03 NE 24 17:07 4.3              
458 11 1:10 NE 19 8:11 0.48              
EMBRA219             EMBRA681            
1, 101 45 24:21:00 0.2 11 8:03 NE 10 11 2:09 NE 19 12:07 1.33
10 13 4:09 NE 17 7:10 0.53 45 19 13:06 2.64 11 3:08 NE
20, 21, 55, 116, 155, 2612 96 34:62 8.29 75 33:42:00 1.08 116 12 3:09 NE 18 10:08 0.22
45 17 12:05 2.97 13 4:09 NE 118 15 8:07 0.07 15 12:03 5.78
95 13 7:06 NE 17 6:11 1.49 155 20 12:08 0.8 10 1:09 NE
118 15 7:08 0.07 15 6:09 0.6 212 15 8:07 0.07 14 9:05 NE
214 12 4:08 NE 18 9:09 0 533 15 7:08 0.07 14 8:06 NE
236 15 8:07 0.07 8 4:04 NE 2612 9 3:06 NE 19 10:09 0.05
241 22 8:14 1.66 8 5:03 NE              
458 16 6:10 1.01 14 11:03 NE              
EMBRA333                          
1 20 14:06 3.29 5 3:02 NE              
10 22 6:16 4.72 8 3:05 NE              
21 15 7:08 0.07 14 6:08 NE              
45, 2612 29 11:18 1.71 29 17:12 0.87              
101 23 16:07 3.62 7 5:02 NE              
116 11 2:09 NE 20 10:10 0              
155 19 9:10 0.05 11 11:00 NE              
214 7 0:07 NE 23 13:10 0.39              
241 22 9:13 0.73 8 2:06 NE              
53+0000000000000000000003 24 10:14 0.67 6 0:06 NE            

Table 1. Mendelian inheritance tests for 15 microsatellite loci in Eucalyptus urophylla.

  Mother G Mother G Mother G Mother G Mother G
  EMBRA2xEMBRA28   EMBRA2xEMBRA11 EMBRA2xEMBRA63 EMBRA28xEMBRA3 EMBRA28xEMBRA10  
10 12.04 55 2.96 2612 5.61 214 0.58 55 0.8
21 3.97 86 1.46 EMBRA2xEMBRA12 236 1.26 86 0.95
45 5.26 104 9.28 10 2.87 241 5.33 101 2.31
55 0.25 116 3.7 20 3.58 458 0.24 104 8.73
86 3.19 155 6.67 21 2.46 2473 1.27 116 0.05
104 13.72 212 2.19 45 2.02 EMBRA28xEMBRA11 155 2.95
116 2.04 2612 4.27 55 6.15 1 2.82 212 1.07
155 6.43 EMBRA2xEMBRA10 86 2.6 10 11.05 214 23.68*
212 3.05 10 10.9 95 20.79* 21 1.87 236 9.23
214 4.69 20 7.5 104 10.58 45 3.82 241 4.34
  EMBRA2xEMBRA3   21 3.67 116 3.61 55 1.3 458 1.93
10 9.57 45 2.78 155 7.48 86 0.3 2473 0.67
20 2.69 55 1.65 212 4.46 101 1.37 EMBRA28xEMBRA63  
21 2.69 86 5.6 214 5.99 104 3.31 10 31.82*
45 1.3 104 5.19 2612 1.79 116 3 21 4.23
55 8.02 155 7.09 EMBRA28xEMBRA3 155 4.53 45 3.61
86 6.62 212 1.94 1 1.37 212 1.76 55 6.34
95 21.19* 214 NE 10 11.57 214 0.58 101 0.95
104 16.94* 2612 1.51 21 5.2 236 9.74 104 4.34
116 1.19 EMBRA2xEMBRA63 45 3.89 241 4.36 155 15.37
155 7.77 10 19.51* 55 3.32 458 4.06 241 4.38
2612 1.98 21 5.54 86 2.89 2473 0.12 2473 5.27
  EMBRA2xEMBRA11   45 4.89 101 1.11 EMBRA28xEMBRA10 EMBRA28xEMBRA12  
10 0.49 55 9.26 104 2.85 1 2.42 10 7.74
20 3.78 95 20.39* 116 1.53 10 11.97 21 6.28
21 2.43 104 5.36 155 5.44 21 7.59 45 3.38
45 1.17 155 10.62 212 1.62 45 3.03 55 1.96
  Mother G Mother G Mother G Mother G Mother G
  EMBRA28xEMBRA12   EMBRA3xEMBRA11 EMBRA3xEMBRA63 EMBRA3xEMBRA157 EMBRA11xEMBRA10  
86 0.2 86 1.48 45 6.57 21 3.18 55 2.97
101 0.49 104 10.39 55 5.56 45 2.16 65 0.88
104 2.61 116 2.4 95 7.34 65 0.67 86 3.25
116 0.37 155 17.28* 104 3.28 95 7.46 101 3.08
155 1.62 236 13.57 155 11.04 116 2.6 104 5.55
212 4.15 533 4.41 2473 3.23 236 7.9 155 2.47
214 0.79 2612 5.44 2612 1.74 2473 0.44 212 0.96
236 6.06 EMBRA3xEMBRA10 EMBRA3xEMBRA12 2612 2.57 236 15.98
458 2.87 1 0.73 10 4.27 EMBRA3xEMBRA204 241 2.11
2473 0.29 10 5.88 20 0.28 10 3.49 458 3.98
  EMBRA28xEMBRA157   20 8.1 21 2.22 20 10.22 533 0.18
20 4.07 21 6.25 45 1.03 21 5.85 2612 1.79
45 3.01 45 6.95 55 5.27 45 4.59 EMBRA11xEMBRA63  
116 3.52 55 6.46 65 0.73 55 4.56 10 18.32*
212 4.58 65 0.45 86 4.72 86 9.77 21 8.69
236 5.15 86 5.94 95 8.26 95 8.17 45 4.79
458 2.7 104 2.6 104 5.89 116 1.43 55 11.37
2473 1.07 155 8.57 116 1.34 155 5.83 101 3.54
EMBRA3xEMBRA11   236 10.65 155 4.91 533 3.57 104 4.54
10 4.58 533 3.79 236 3.17 2612 5.2 118 1.65
20 0.07 2473 1.26 533 5.56 EMBRA11xEMBRA10 155 12.79
21 7.03 2612 0.8 2473 0.29 10 6.98 241 4.6
45 2.92 EMBRA3xEMBRA63 2612 1.12 20 6.88 2612 3.52
55 4.47 10 18.98* EMBRA3xEMBRA157 21 6.79 EMBRA11xEMBRA12  
65 0.08 21 7.61 20 4.2 45 2.64 10 13.37
Mother G Mother G Mother G Mother G Mother G
EMBRA11xEMBRA12   EMBRA11xEMBRA157 EMBRA11xEMBRA219 EMBRA10xEMBRA12 EMBRA10xEMBRA204  
20 0.38 458 2.61 116 4.63 86 1.35 45 3
21 4.83 2612 0.53 118 6.34 101 2.13 55 2.75
45 0.81 EMBRA11xEMBRA204 155 0.88 104 1.83 86 9.11
55 3.33 10 1.96 236 10.04 155 3.49 155 1.73
65 0.62 20 1 241 0.69 212 5.04 212 3.87
86 3.82 21 2.83 458 11.61 214 NE 214 36.71*
101 2.87 45 1.79 2612 5.32 236 17.39* 458 4.86
104 1.36 55 2.03 EMBRA10xEMBRA63 458 8.66 533 2.43
116 15.08 86 6.09 10 30.24* 533 1.72 2612 0.8
118 10.56 116 5.34 21 8.8 2473 1.8 EMBRA10xEMBRA219  
155 4.43 118 7.17 45 8.03 2612 4.93 1 1.22
212 4.85 155 2.28 55 5.32 EMBRA10xEMBRA157 10 9.87
236 10.07 212 7.16 101 3.04 20 4.23 20 11.29
458 4.85 458 2.52 104 0.88 21 3.28 21 4.65
533 1.87 533 1.26 155 19.15* 45 1.57 45 9.38
2612 2.61 2612 0.84 241 6.93 65 0.98 55 3.26
EMBRA11xEMBRA157   EMBRA11xEMBRA219 2473 2.23 212 5.39 65 6.12
20 0.73 10 2.37 2612 2.15 236 22.45* 86 1.97
21 7.87 20 2.58 EMBRA10xEMBRA12 458 1.66 101 9.37
45 1.26 21 6.99 10 6.34 2473 0.57 155 4.56
65 0.9 45 3 20 6.01 2612 0.83 214 23.30*
116 3.08 55 2.99 21 3.89 EMBRA10xEMBRA204 236 12.52
118 2.69 65 2.16 45 0.84 10 7.03 241 5.56
212 6.05 86 0.13 55 1.19 20 4.7 458 8.8
236 16.23 101 3.42 65 0.91 21 9.32 2473 5.6
Mother G Mother G Mother G Mother G Mother G
EMBRA10xEMBRA219   EMBRA63xEMBRA12 EMBRA63xEMBRA219 EMBRA12xEMBRA157 EMBRA12xEMBRA219  
2612 3.89 155 12.93 101 1.97 116 3.03 20 20.13*
EMBRA10xEMBRA333   2473 4.73 118 11.98 118 2.4 21 5.18
1 2.96 2612 2.19 155 11.65 212 7.99 45 1.74
10 17.32* EMBRA63xEMBRA157 241 5.4 236 13.02 55 2.19
21 6.59 21 8.9 2473 3.32 458 2.28 65 3.37
45 5.34 45 4.6 2612 4.22 2473 0.12 86 0.34
65 2.94 95 8.23 EMBRA63xEMBRA333 2612 1.74 95 0.2
86 6.4 118 0.83 10 25.43 EMBRA12xEMBRA204 101 2.87
101 2.76 2473 5.69 21 9.59 10 0.33 116 2.85
155 9.21 2612 0.8 45 1.26 20 2.01 118 4.53
212 5.15 EMBRA63xEMBRA204 101 0.78 21 1.38 155 2.03
214 NE 10 8.5 155 16.11 45 1.46 214 0.88
241 6.11 21 2.86 241 13.84 55 1.72 236 1.13
533 2.03 45 8.61 2473 1.54 86 10.84 458 7.21
2473 1.01 55 5.17 2612 4.46 95 1.4 2473 4.72
  2612 3.35 95 7.2 EMBRA63xEMBRA128 116 3.42 2612 1.48
EMBRA63xEMBRA1210   118 7.45 10 15.54 118 11.78 EMBRA12xEMBRA333
21.92* 155 15.17 21 6.69 155 1.74 10 1.48
21 3.75 2612 0.76 118 13.48 212 8.09 21 1.35
45 5.14 EMBRA63xEMBRA219 EMBRA12xEMBRA157 214 6.28 45 0.73
55 3.81 10 20.57* 20 1.23 458 5.48 65 5.17
95 6.59 21 4.48 21 1.36 533 2.71 86 4.44
101 2.35 45 6 45 0.06 2612 1.59 101 0.74
104 5.96 55 5.83 65 3.05 EMBRA12xEMBRA219 116 8.19
118 3.77 95 2.75 95 4.06 10 3.35 155 10.24
Mother G Mother G Mother G Mother G Mother G
EMBRA12xEMBRA333   EMBRA12xEMBRA38 EMBRA157xEMBRA333 EMBRA157xEMBRA210 EMBRA204xEMBRA333
212 9.01 212 10.26 21 1.41 95 3.97 212 9.77
214 4.18 214 1.97 45 3.04 116 3.43 214 7.01
533 2.95 236 2.42 65 2.41 118 0.25 533 0.72
2473 1.54 EMBRA157xEMBRA204 116 5.48 212 10 2612 0.49
2612 10.73 20 4.01 212 5.92 EMBRA204xEMBRA219 EMBRA204xEMBRA128
EMBRA12xEMBRA128   21 2.33 2473 1.02 10 1.23 10 3.21
10 2.08 45 2.37 2612 1.95 20 3.21 21 3.37
21 2.32 95 1.79 EMBRA157xEMBRA128 21 8.97 86 16.49*
86 1.66 116 1.44 21 5.38 45 9.77 116 6.2
116 2.62 118 4.23 116 1.98 55 2.02 118 6.62
118 17.19* 212 9.66 118 12.65 86 5.75 212 7.07
212 3.39 458 2.79 212 5.19 95 3.81 214 16.94*
214 12.83 2612 0.9 EMBRA157xEMBRA38 116 3.95 EMBRA204xEMBRA38
EMBRA12xEMBRA38   EMBRA157xEMBRA219 21 3.25 118 10.97 21 1.74
21 7.83 20 0.56 45 0.47 155 3.04 45 5.21
45 0.57 21 1.53 65 1.1 214 12.61 55 0.51
55 0.73 45 4.01 95 5.94 458 9.77 86 11.22
65 0.31 65 2.89 116 1.72 2612 4.03 95 1.23
86 1.5 95 7.21 118 0.48 EMBRA204xEMBRA333 116 2.53
95 0.83 116 3.69 212 3.35 10 6.24 118 4.49
101 1.52 118 6.99 236 16.86* 21 3.15 155 3.23
104 6.68 236 10.03 EMBRA157xEMBRA210 45 4.14 212 6.81
116 1.52 458 16.27* 21 2.33 86 9.68 214 5.84
118 8.16 2473 3.76 45 0.67 116 5.33 EMBRA204xEMBRA210
155 3.71 2612 4.47 65 4.59 155 10.75 21 8.72
Mother G Mother G Mother G Mother G Mother G
EMBRA204xEMBRA210     EMBRA219xEMBRA333 EMBRA219xEMBRA38 EMBRA219xEMBRA681 EMBRA333xEMBRA210
45 3.72 45 3.5 101 4.33 118 7.99 45 0.97
55 12.14 65 6.22 116 4.6 155 4.24 65 6.85
86 5.29 86 4.17 118 7.82 2473 4.86 86 2.83
95 3.38 101 1.11 155 3.86 2612 9.1 116 13.28
116 7.97 116 3.25 214 5.19 EMBRA333xEMBRA128 155 5.24
118 8.56 155 11.38 236 0.23 1 0.3 212 7.84
155 3.53 214 9.03 241 1.57 10 5.04 214 11.37
212 8.48 241 2.5 EMBRA219xEMBRA210 21 2.81 533 0.9
214 14.94 2473 2.08 21 8.97 86 4.64 EMBRA333xEMBRA681
533 1.74 2612 4.66 45 3.17 116 2.08 10 5.42
EMBRA204xEMBRA681   EMBRA219xEMBRA128 55 10.09 212 2.32 45 0.75
10 1.53 1 1.18 65 6.91 214 12.75 65 7.75
45 2.92 10 5.12 86 3.55 EMBRA333xEMBRA38 116 3.49
55 1.14 21 9.14 95 2.87 21 0.31 155 7.8
95 11.18 86 2.65 116 13.76 45 6.35 212 3.27
116 3.46 116 4.71 118 3.65 65 3.6 533 0.38
118 12.25 118 16.13 155 3.18 86 6 2473 4.32
155 1.05 214 12.12 214 13.16 101 1.8 2612 6.44
212 1.68 EMBRA219xEMBRA38 EMBRA219xEMBRA681 116 7.35 EMBRA128xEMBRA38
533 0.07 21 2.56 10 1.4 155 8.86 21 5.58
2612 4.66 45 3.25 45 2.09 212 8.26 86 1.88
EMBRA219xEMBRA333   55 1.74 55 0.65 214 3.84 116 1.87
1 0.2 65 2.12 65 4.36 241 4.3 118 6.59
10 5.89 86 0.39 95 11.98 EMBRA333xEMBRA210 212 3.72
21 5.74 95 1.2 116 3.36 21 1.9 214 12.34
Mother G Mother G Mother G Mother G Mother G
EMBRA128xEMBRA210   EMBRA128xEMBRA681 EMBRA38xEMBRA210 EMBRA38xEMBRA681 EMBRA210xEMBRA681
21 4.44 118 16.97* 116 13.66 95 12.36 95 9.33
86 3.44 212 1.73 118 3.17 116 0.75 116 6.97
116 8.44 EMBRA38xEMBRA210 155 1.3 118 5.13 118 2.88
118 11.07 21 1.74 212 5.69 155 2.57 155 1.46
212 2.35 45 0.27 214 10.27 212 4.49 212 1.27
214 15.41 55 0.53 EMBRA38xEMBRA681 EMBRA210xEMBRA681 533 0.06
EMBRA128xEMBRA681   65 5.31 45 0.58 45 0.53    
10 0.34 86 2.38 55 0.52 55 0.9    
116 1.15 95 2.08 65 2.42 65 8.47    

Table 2. Values of maximum likelihood G-test for the hypothesis of independent segregation between pairwise loci (1:1:1:1) for Eucalyptus urophylla.

 

EMB2 EMB28 EMB3 EMB11 EMB10 EMB63 EMB12 EMB157 EMB204 EMB128 EMB38 EMB210 EMB681
EMB2 - 0.01090 0.00363 0.08419 0.37607 0.05406 0.16368 0.33718 0.32885 0.09829 0.31346 0.01068 0.00021*
EMB28 0.55449 - 0.07778 0.13120 0.12308 0.01111 0.00363 0.02308 0.07863 0.01239 0.17073 0.05449 0.13312
EMB3 0.01731 0.00278 - 0.08205 0.00385 0.00983 0.00128 0.00021* 0.00043 0.00812 0.00705 0.00192 0.03547
EMB11 0.66175 0.02970 0.06175 - 0.00406 0.08462 0.00299 0.31880 0.30299 0.14124 0.16453 0.12991 0.00641
EMB10 0.93462 0.48397 0.80321 0.45855 - 0.00556 0.10299 0.49017 0.11432 0.08868 0.00021* 0.02393 0.34979
EMB63 0.03718 0.18974 0.00534 0.27030 0.26538 - 0.27842 0.01987 0.22628 0.69380 0.04359 0.10043 0.08419
EMB12 0.14615 0.66731 0.04487 1.0000 0.08718 0.40342 - 0.00299 0.03376 0.11346 0.06132 0.04850 0.02778
EMB157 0.64017 0.10192 0.00919 0.00620 0.26410 0.06731 0.02885 - 0.02073 0.05000 0.02009 0.00256 0.01239
EMB204 0.01667 0.85128 0.03120 0.36731 0.76154 0.18568 0.85491 0.30855 - 0.13654 0.00171 0.00021* 0.00021*
EMB128 0.13889 0.00620 0.15085 0.03868 0.23974 0.21859 0.33226 0.39487 0.87286 - 0.00021* 0.18483 0.06944
EMB38 0.58932 0.30342 0.04444 0.56731 0.25833 0.88739 0.62115 0.75021 0.31346 0.27286 - 0.05983 0.00150
EMB210 0.06709 0.84167 0.02970 0.33739 0.53462 0.27970 0.83504 0.30726 0.00021* 0.86239 0.26560 - 0.00021*
EMB681 0.00021* 0.04103 0.10021 0.06261 0.04231 0.14530 0.93568 0.13355 0.64316 0.06026 0.71816 0.38590 -

Table 3. Genotypic disequilibrium between pairwise microsatellite loci for Eucalyptus urophylla adult trees from seed orchard SO1 (lower diagonal) and SO2 (upper diagonal).

Discussion

Mendelian 1:1 segregation at the individual locus was confirmed for 13 of the tested SSR loci. Significant deviations were only found in isolated cases of EMBRA2 (tree 95) and EMBRA63 (trees 10 and 155), where we found disproportionate results for segregated maternal alleles in their progenies. Of the 30 seeds collected from mother tree 95 (110/132), 27 received allele 110 (90%); for trees 10 and 155 (168/172), 30 (100%), and 26 (86.7%) of the 30 offspring, respectively, received allele 172. These results suggest the occurrence of segregation deviation caused by pre- or post-zygotic factors. Segregation deviations in a limited number of SSR loci of some families can also be caused by sampling errors, small family size, misinterpretation of allele size, or the presence of null alleles (Danner et al., 2013; Tambarussi et al., 2013). Nevertheless, these limited instances found herein do not indicate that the loci deviate from the expected Mendelian inheritance and we can conclude that the 15 EMBRA SSR markers are genetic markers.

The small numbers of significant G-test deviations from independent segregation between pairs of loci (1:1:1:1) indicate that the loci segregate independently. Significant values were observed for different families and occurred more frequently between the following pairs: EMBRA2xEMBRA3, EMBRA2xEMBRA63, and EMBRA204xEMBRA128. The significant linkage may be the result of true genetic linkage or deviations from 1:1 Mendelian segregation (Manoel et al., 2015; Moraes et al., 2015), as observed for EMBRA2 and EMBRA63. The absence of linkage between the loci is important concerning models used in population genetic analyses, which assume random segregation between alleles of different loci.

Considering the two seed orchards, our results do not indicate genotypic disequilibrium. Only 5.8% of the results between pairs of loci were significant, and the majority (78%) was detected in SO2. This is likely due to relatedness that exists between the 79 and 298 adult trees on SO1 and SO2, respectively, and the unbalanced proportion of individuals within families that remained after selective thinning during orchard establishment. In both orchards, significance was found between loci EMBRA681xEMBRA2 and EMBRA204xEMBRA210. The imbalance may be affected by selection, recombination, migration, population reduction,

genetic drift, and population structure (Kumar et al., 2004). Tarazi et al. (2010) found genotypic disequilibrium between pairwise loci in open-pollinated seeds of Copaifera langsdorffii, probably due to the inheritance of maternal alleles. When the family structure was considered in the analysis, with a limited number of seeds per family, a few significant values of genotypic disequilibrium were detected, thus supporting the idea that the inheritance of maternal alleles produces genotypic disequilibrium. In conclusion, our results show that the 15 SSR loci analyzed herein form a robust set of genetic markers, which can be used to assess issues related to genetic diversity, mating system, and parentage analysis, providing more in-depth information that can be used to advance E. urophylla breeding programs.

Acknowledgments

Research supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; Project #2014/03407-7), Eldorado Brasil, Suzano Papel e Celulose, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors would like to thank CNPq for research funding provided to A.M. Sebbenn and M.L.T. Moraes. We also extend our special thanks to Universidade Estadual Paulista/UNESP and to Dr. Evelyn Nimmo for her correction of the English in the manuscript.

About the Authors

Corresponding Author

S. Pupin

Departamento de Fitotecnia, Tecnologia de Alimentos e Sócio Economia, Faculda, Universidade Estadual Paulista, Ilha Solteira, SP, Brasil

Email:
silvelise.pupin@gmail.com

References

  • Barabaschi D, Tondelli A, Desiderio F, Volante A, et al. (2016). Next generation breeding. Plant Sci. 242: 3-13. https://doi. org/10.1016/j.plantsci.2015.07.010
  • Brondani RPV, Brondani C, Tarchini R and Grattapaglia D (1998). Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor. Appl. Genet. 97: 816-827. https://doi. org/10.1007/s001220050961
  • Brondani RPV, Williams ER, Brondani C and Grattapaglia D (2006). A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol. 6: 20. https://doi. org/10.1186/1471-2229-6-20
  • Byrne M, Marquez-Garcia MI, Uren T, Smith DS, et al. (1996). Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus. Aust. J. Bot. 44: 331-341. https://doi.org/10.1071/BT9960331
  • Carvalho AO, Alfenas AC, Maffia LA and Carmo MGF (1998). Resistência de espécies, progênies e procedências de Eucalyptus à ferrugem, causada por Puccinia psidii Winter. Pesqui. Agropecu. Bras. 33: 139-147.
  • Danner MA, Ribeiro JZ, Zanette F, Bittencourt JVM, et al. (2013). Mendelian segregation in eight microsatellite loci from hand-and-open-pollinated progenies of Araucaria angustifolia (Bert.) O. Kuntze (Araucariaceae). Silvae Genet. 62: 18-25.
  • Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry 19: 11-15.
  • Faria DA, Mamani EMC, Pappas Jr GJ, and Grattapaglia D (2011). Genotyping systems for Eucalyptus based on tetra-, penta-, and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests. Tree Genet. Genomes 7: 63-77.https://doi.org/10.1007/s11295-010-0315-9
  • Gillet E and Hattemer HH (1989). Genetic analysis of isoenzyme phenotypes using single tree progenies. Heredity 63:135-141. https://doi.org/10.1038/hdy.1989.84
  • Goudet J (2002). FSTAT (Version 2.9.3.2.): a computer program to calculate F-statistics. Heredity 86: 485-486. https://doi. org/10.1093/oxfordjournals.jhered.a111627
  • Grattapaglia D, Vaillancourt RE, Shepherd M, Thumma BR, et al. (2012). Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet. Genomes 8: 463-508.https://doi.org/10.1007/s11295-012-0491-x
  • Harfouche A, Meilan R and Altman A (2014). Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiol. 34: 1181-1198. https://doi.org/10.1093/treephys/tpu012
  • Hodge GR and Dvorak WS (2015). Provenance variation and within- provenance genetic parameters in Eucalyptus urophylla across 125 test sites in Brazil, Colombia, Mexico, South Africa and Venezuela. Tree Genet. Genomes 11:11-57. https://doi.org/10.1007/s11295-015-0889-3
  • Kumar S, Echt C, Wilcox PL and Richardson TE (2004). Testing for linkage disequilibrium in the New Zealand radiata pine breeding population. Theor. Appl. Genet. 108: 292-298. https://doi.org/10.1007/s00122-003-1352-7
  • Manoel RO, Freitas MLM, Tambarussi EV, Cambuim J, et al. (2015). Mendelian inheritance, genetic linkage, and genotypic disequilibrium at microsatellite loci in Genipa americana L. (Rubiaceae). Genet. Mol. Res. 14: 8161-8169. https://doi.org/10.4238/2015.July.27.4
  • Matschiner M and Salzburger W (2009). TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25: 1982-1983. https://doi.org/10.1093/bioinformatics/btp303
  • Moraes MA, Kubota TYK, Silva ECB, Silva AM, et al. (2015). Mendelian inheritance, linkage, and genotypic disequilibrium in microsatellite loci of Hymenaea stigonocarpa Mart. exHayne (Fabaceae-Caesalpinioideae). Genet. Mol. Res. 15: 1-8.
  • Randall BW, Walton DA, Lee DJ and Wallace HM (2015). Comparison of three pollination methods for Eucalyptus argophloia, a small-flowered eucalypt. Ann. For. Sci. 72: 127-133.https://doi.org/10.1007/s13595-014-0407-z
  • Sokal RR and Rohlf FJ (1981). Biometry: The Principles and Practice of Statistics in Biological Research. Copyright Ltd., New York.
  • Tambarussi EV, Vencovsky R, Freitas MLM and Sebbenn AM (2013). Mendelian inheritance, genetic linkage, and genotypic disequilibrium at nine microsatellite loci of Cariniana legalis (Mart.) O. Kuntze. Genet. Mol. Res. 12: 5442-5457. https://doi.org/10.4238/2013.November.11.6
  • Tarazi R, Sebbenn AM, Mollinari M and Vencovsky R (2010). Mendelian inheritance, linkage and linkage disequilibrium on microsatellite loci of Copaifera langsdorffii Desf. Conserv. Genet. Resour. 2: 201-204. https://doi.org/10.1007/ s12686-010-9230-5

Keywords:
Download:
Full PDF