All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.
Research Article

Mendelian inheritance, genetic linkage, and genotypic disequilibrium for nine microsatellite loci in Cariniana estrellensis (Raddi) Kuntze (Lecythidaceae)

Published: May 04, 2017
Genet.Mol.Res. 16(2): gmr16029653
DOI: 10.4238/gmr16029653

Abstract

Cariniana estrellensis is one of the largest trees found in Brazilian tropical forests. The species is typical of advanced stages of succession, characteristic of climax forests, and essential in genetic conservation and environmental restoration plans. In this study, we assessed Mendelian inheritance, genetic linkage, and genotypic disequilibrium in nine microsatellite loci for a C. estrellensis population. We sampled and genotyped 285 adult trees and collected seeds from 20 trees in a fragmented forest landscape in Brazil. Based on maternal genotypes and their seeds, we found no deviation from the expected 1:1 Mendelian segregation and no genetic linkage between pairwise loci. However, for adults, genotypic disequilibrium was detected for four pairs of loci, suggesting that this result was not caused by genetic linkage. Based on these results, we analyzed microsatellite loci that are suitable for use in population genetic studies assessing genetic diversity, mating system, and gene flow in C. estrellensis populations.

Introduction

Cariniana estrellensis (Raddi) Kuntze (Lecythidaceae), or jequitibá-branco, has a wide geographic range distributed across Brazil, Bolivia, Paraguay, and Peru. The species is a priority for genetic conservation due to its ecological (reforestation) and commercial (wood and pulp) importance. It is currently threatened with extinction due to intense exploitation of the species as a timber resource (FAO, 2002). The species is hermaphroditic and pollinated mainly by bees of the genus Melipona and Trigona. Its winged seeds are dispersed by wind and periods of flowering and fruiting vary greatly across its range (Prance and Mori, 1979; Carvalho, 2003; Leite, 2007).

Microsatellite markers (simple sequence repeats, SSR) are a useful tool to analyze the genetics of forest species due to their high degree of polymorphism in terms of numbers of alleles. However, in order to use molecular markers as genetic markers, it is important to determine whether their inheritance follows the rules of Mendelian segregation, and whether the loci are genetically linked (Tambarussi et al., 2013; Manoel et al., 2015; Moraes et al., 2016). Studies assessing linkage among loci are also necessary because the detected loci are used to calculate averages among loci in population genetic studies; therefore, linked loci can create bias in the estimates (Guidugli et al., 2010). To enable the analysis of genetic diversity and structure, mating system, and gene flow for C. estrellensis herein we assess the Mendelian inheritance, genetic linkage, and genotypic disequilibrium for nine microsatellite loci developed for the species.

Materials and Methods

The study was based on samples collected from a highly fragmented forest landscape situated in a transition zone between the Savanna and Atlantic Forest biomes. The study area covers 448.2 ha and is located in the city of Bataguassu (Mato Grosso do Sul State, Brazil), alongside the Pardo River (21°38'00''S, 52°14'02''W). All 285 adult trees found in the area were sampled and 32 seeds were collected from each of 20 selected seed trees. For the molecular analyses, we used foliar or cambial tissue from adult trees and foliar samples from seeds germinated in a nursery.

Multilocus genotyping of the C. estrellensis samples was performed at the HERÉDITAS/GENOMAX laboratory. We used nine microsatellite loci chosen from the 15 loci previously developed for the species (Guidugli et al., 2009). The loci were analyzed in an ABI 3100XL automatic sequencer. Based on these genotypes, a multilocus profile was defined that allows for the identification of each sample individually and enables the analyses of population genetic parameters.

The study of microsatellite locus inheritance was based on the method described by Gillet and Hattemer (1989), which compares the genotype of a heterozygous maternal tree with the segregation of its open-pollinated progenies. This method assumes that all loci have regular segregation and their alleles follow Mendelian inheritance patterns based on the following conditions: i) regular meiotic segregation during ovule production; ii) random ovule fertilization by a type of pollen; and iii) no selection between the moment of fertilization and the genotyping of seeds. The model also assumes a co-dominant relationship between all alleles. The method further requires that all progeny of a tree must possess a maternal allele, and in cases of a heterozygous mother tree (e.g., AiAj, i ≠ j, the following are required: a) each individual within progeny must have one allele of the maternal tree, Ai or Aj; b) the number of heterozygous progeny AiAj (nij) must be equal to the sum of the number of homozygous progeny AiAi (nii) and AjAj (njj): nij = nii + njj; and c) the number of heterozygous progeny AiAk (nik) must be equal to the number of heterozygous progeny AjAk (njk), or nik = njk, in other words k ≠ i, j. The observed segregation of each progeny of the heterozygous maternal tree for a given locus was statistically compared to that expected for the segregation hypothesis of 1:1, using the G-test (Sokal and Rohlf, 1981):

equation (Equation 1)

where ln is the natural logarithm, E(n1) is the expected number of offspring genotypes AiAj equation

equation (Equation 2)

where E(n2) is the expected number of genotypes for alleles AiAk (nik) and AjAk (njk): E(n2) = 0.5(nik + njk). To avoid false positives, the G-test was determined only when n1 and n2 was ≥10, and deviation from the G-test between the observed and expected segregation was determined as statistically significant using the Bonferroni correction for multiple comparisons (95%, α = 0.05).

To determine if the loci were genetically linked, a test was carried out between pairs of loci using genetic information from mother trees that were doubly heterozygous for two loci (AiAj, BlBm). The segregation was recorded in their progeny. In this case, the null hypothesis (HO) was regular Mendelian segregation of 1:1:1:1. The regular segregation hypothesis between pairs of loci was accepted or rejected based on a maximum likelihood G-test (Sokal and Rohlf, 1981), performed for each progeny:

equation (Equation 3)

where nil, nim, njl, and njm are the observed numbers of the phenotypes AiBl, AiBm, AjBl, and AjBm, respectively, and E(n) is the expected number of each genotype AiBl, AiBm, AjBl, and AjBm, calculated by E(n) = 0.25 (nil + nim + njl + njm). We again applied the Bonferroni correction for multiple comparisons (95%, a = 0.05) to avoid false positives.

The genotypic disequilibrium test between pairwise loci was only performed with adult samples. Estimates of gene frequencies based on open-pollinated progeny arrays are biased because each progeny has at least one maternal allele, resulting in a genotypic disequilibrium. This analysis was carried out using the FSTAT software (Goudet, 1995). The probabilities of the significance test were obtained by permutation of alleles among individuals, associated with the Bonferroni correction for multiple comparisons (95%, α = 0.05).

Results

After Bonferroni correction, we found no deviation from 1:1 Mendelian segregation for the nine loci analyzed for C. estrellensis heterozygous trees (Table 1). Furthermore, after Bonferroni correction, we detected no deviation from 1:1:1:1 Mendelian segregation between pairwise loci, indicating that the nine loci analyzed in this study are not linked (Table 2). However, significant genotypic disequilibrium was detected between four pairs of loci among adult trees after Bonferroni correction: Ces01 x Ces02, Ces01 x Ces04, Ces01 x Ces11, and Ces04 x Ces11 (Table 3).

Locus/mother Mother genotype n1 nij: nii + njj G1 n2 nik:njk G2
Ces01
1 158/162 6 0:6 NE 26 11:15 0.62
5 148/152 23 11:12 0.04 10 8:2 3.85
15 148/152 23 9:14 1.09 9 1:8 NE
22 152/156 23 4:19 10.63 9 9:0 NE
31 152/156 27 8:19 4.61 5 1:4 NE
66 148/152 31 16:15 0.03 1 0:1 NE
91 152/156 23 5:18 7.80 9 9:0 NE
101 146/156 22 12:10 0.18 10 1:9 7.36
123 146/152 29 17:12 0.86 3 0:3 NE
125 146/150 30 11:19 2.15 2 1:1 NE
136 148/152 23 15:8 2.16 9 0:9 NE
Ces02
15 170/186 24 12:12 0.00 8 4:4 NE
19 182/186 22 17:5 0.18 10 8:2 3.85
21 170/182 28 9:19 3.65 4 4:0 NE
22 170/182 22 14:8 1.65 10 6:4 0.40
31 170/182 17 10:7 0.53 15 9:6 0.60
35 170/186 25 14:11 0.36 7 6:1 NE
45 170/182 25 15:10 1.00 7 4:3 NE
66 170/186 32 10:22 4.61 0 0:0 NE
96 170/186 22 11:11 0.00 10 7:3 1.64
101 182/186 12 6:6 0.00 20 13:7 1.82
119 170/186 26 12:14 0.15 6 3:3 NE
123 170/186 32 17:15 0.12 0 0:0 NE
125 170/186 32 11:21 3.17 0 0:0 NE
136 170/186 32 16:16 0.00 0 0:0 NE
225 182/186 21 9:12 0.43 11 6:5 0.09
Ces04
1 184/204 17 8:9 0.05 15 7:8 0.06
5 204/212 13 7:6 0.07 19 10:9 0.05
15 182/216 10 8:2 3.85 22 11:11 0.00
19 182/204 19 12:7 1.33 13 2:11 6.85
21 206/216 5 1:4 NE 27 16:11 0.93
22 186/212 1 0:1 NE 31 17:14 0.29
31 186/214 15 3:12 5.78 17 12:5 2.97
35 212/216 11 6:5 0.09 21 9:12 0.43
45 182/214 11 6:5 0.09 21 14:7 2.37
64 204/216 5 5:0 NE 27 13:14 0.03
66 204/212 4 1:3 NE 28 16:12 0.57
88 178/216 15 8:7 0.06 17 12:5 2.97
91 182/186 5 3:2 NE 27 15:12 0.33
96 188/214 4 2:2 NE 28 13:15 0.14
101 214/216 15 8:7 0.06 17 7:10 0.53
119 182/216 17 8:9 0.05 15 8:7 0.06
123 204/216 3 3:0 NE 29 13:16 0.31
125 182/216 0 0:0 NE 32 14:18 0.50
136 182/200 6 3:3 NE 26 14:12 0.15
225 208/214 0 0:0 NE 32 20:12 2.02
Ces09
1 179/183 32 16:16 0.00 0 0:0 NE
15 177/179 26 11:15 0.61 6 1:5 NE
19 177/179 21 8:13 1.20 0 0:0 NE
22 179/183 25 17:8 3.31 7 4:3 NE
35 179/183 32 14:18 0.50 0 0:0 NE
45 179/183 23 13:10 0.39 9 8:1 NE
64 177/179 26 11:15 0.61 6 5:1 NE
66 179/183 27 11:16 0.93 5 3:2 NE
88 177/183 11 4:7 0.82 21 9:12 0.43
96 177/183 5 3:2 NE 27 13:14 0.03
101 179/183 26 10:16 1.39 6 4:2 NE
123 179/183 28 14:14 0.00 4 2:2 NE
225 179/183 32 16:16 0.00 0 0:0 NE
Ces10
21 197/199 29 14:15 0.03 3 0:3 NE
35 197/199 32 9:23 6.33 0 0:0 NE
91 197/199 32 14:18 0.50 0 0:0 NE
96 197/199 29 9:20 4.27 3 0:3 NE
101 197/199 32 14:18 0.50 0 0:0 NE
119 197/199 32 20:12 2.02 0 0:0 NE
123 197/199 27 14:13 0.03 5 4:1 NE
125 199/203 11 5:6 0.09 21 11:10 0.04
136 197/199 24 12:12 0.00 8 5:3 NE
Ces11
1 206/212 15 3:12 5.78 17 9:8 0.05
5 206/210 20 13:7 1.82 12 9:3 3.13
19 208/232 14 6:8 0.28 18 12:6 2.03
21 206/232 14 6:8 0.28 18 12:6 2.03
22 230/232 15 3:12 5.78 17 8:9 0.05
31 206/230 12 6:6 0.00 20 8:12 0.80
35 210/234 6 3:3 NE 26 8:18 3.94
45 206/208 16 8:8 0.00 16 7:9 0.25
64 206/232 8 4:4 NE 24 9:15 1.51
66 206/208 18 10:8 0.22 14 7:7 0.00
88 206/218 8 2:6 NE 24 10:14 0.66
91 208/212 9 4:5 NE 23 11:12 0.04
123 206/208 25 11:14 0.36 7 4:3 NE
125 206/208 21 8:13 1.20 11 10:1 8.54
136 206/208 32 18:14 0.50 0 0:0 NE
Ces13
1 130/142 22 14:8 1.65 10 3:7 1.64
5 140/148 13 3:10 3.97 19 12:7 1.33
15 130/142 19 13:6 2.64 13 4:9 1.97
19 130/142 22 11:11 0.00 10 7:3 1.64
21 138/142 24 14:10 0.66 8 0:8 NE
22 142/148 6 3:3 NE 26 15:11 0.61
31 130/148 4 3:1 NE 28 14:14 0.00
45 140/142 20 7:13 1.82 12 5:7 0.33
64 130/142 12 4:8 1.35 20 12:8 0.80
66 130/148 4 2:2 NE 28 14:14 0.00
88 142/148 12 3:9 3.13 20 11:9 0.20
91 138/142 18 14:4 5.88 14 5:9 1.15
101 140/148 7 3:4 NE 25 12:13 0.04
119 142/148 18 11:7 0.89 14 11:3 4.85
123 138/142 15 6:9 0.60 17 6:11 1.49
125 138/148 21 13:8 1.20 11 5:6 0.09
136 138/140 23 8:15 2.16 9 5:4 NE
225 140/142 21 5:16 6.05 11 10:1 8.54
Ces14
15 182/184 19 8:11 0.47 13 4:9 1.97
31 184/188 24 5:19 8.70 8 2:6 NE
45 182/184 24 8:16 2.71 8 2:6 NE
88 182/184 25 12:13 0.04 7 3:4 NE
91 184/188 32 14:18 0.50 0 0:0 NE
96 182/184 30 13:17 0.53 2 1:1 NE
125 182/184 22 9:13 0.73 10 4:6 0.40
136 184/188 26 13:13 0.00 6 4:2 NE
225 182/184 32 11:21 3.17 0 0:0 NE
Ces18
1 168/180 11 6:5 0.09 21 4:17 8.66
15 174/180 13 2:11 6.85 19 14:5 4.43
19 168/170 25 9:16 1.98 7 0:7 NE
35 168/170 28 12:16 0.57 4 2:2 NE
45 168/180 11 6:5 0.09 21 9:12 0.43
64 168/180 9 2:7 NE 23 9:14 1.09
66 170/180 15 3:12 5.78 17 5:12 2.97
88 170/180 30 14:16 0.13 2 1:1 NE
91 168/170 27 11:16 0.93 5 1:4 NE
96 166/174 9 4:5 NE 23 10:13 0.39
119 174/178 8 3:5 NE 24 21:3 15.18*
123 166/168 17 5:12 2.97 14 9:5 1.15
125 166/170 22 13:9 0.73 10 5:5 0.00
136 168/180 13 5:8 0.70 19 14:5 4.43
225 170/176 16 13:3 6.73 16 7:9 0.25

Table 1: Mendelian inheritance tests for nine microsatellite loci in Cariniana estrellensis.

Ces1 x Ces2 Ces1 x Ces4 Ces1 x Ces9 Ces1 x Ces10 Ces1 x Ces11 Ces1 x Ces13 Ces1 x Ces14 Ces1 x Ces18
1 0.35 (15) 5.12 (1) 6.45 (1) 0.35 (91) 8.32 (1) 1.14 (1) 4.76 (15) 6.64 (1)
2 6.92 (22) 1.32 (5) 10.08 (15) 3.16 (101) 5.22 (5) 1.68 (5) 1.59 (31) 5.38 (15)
3 1.60 (31) 0.40 (15) 10.20 (22) 0.26 (123) 10.30 (22) 2.37 (15) 1.60 (91) 1.74 (66)
4 5.74 (66) 5.42 (22) 1.84 (66) 3.23 (125) 5.38 (31) 7.91 (22) 8.02 (125) 2.16 (91)
5 3.50 (101) 2.08 (31) 5.83 (101) 8.37 (136) 2.46 (66) 0.45 (31) 11.51 (136) 2.16 (101)
6 4.28 (123) 0.23 (66) 6.36 (123) 2.46 (91) 1.27 (66) 2.35 (123)
7 1.74 (125) 0.40 (91) 7.32 (123) 3.87 (91) 8.02 (125)
8 3.31 (136) 1.60 (101) 6.64 (125) 0.84 (101) 11.34 (136)
9 0.35 (123) 8.03 (136) 0.90 (123)
10 1.73 (125) 3.00 (125)
11 6.49 (136) 10.12 (136)
Ces2 x Ces4 Ces2 x Ces9 Ces2 x Ces10 Ces2 x Ces11 Ces2 x Ces13 Ces2 x Ces14 C2 x C18 Ces4 x Ces09
1 0.29 (15) 10.08 (15) 0.33 (21) 1.12 (19) 1.92 (5) 6.51 (15) 3.06 (15) 5.17 (1)
2 3.38 (19) 12.51 (19) 7.63 (35) 8.22 (21) 1.12 (19) 2.17 (31) 4.04 (19) 9.70 (15)
3 2.81 (21) 0.92 (22) 4.00 (6) 7.10 (22) 8.76 (21) 13.12 (45) 6.68 (35) 14.04 (19)
4 1.40 (22) 3.26 (35) 7.61 (101) 1.19 (31) 1.19 (22) 5.15 (96) 5.67 (45) 1.27 (35)
5 3.89 (31) 3.92 (45) 1.71 (119) 7.14 (35) 1.79 (31) 11.51 (125) 3.69 (66) 7.17 (45)
6 3.50 (35) 3.25 (66) 3.75 (123) 3.71 (45) 5.94 (45) 2.49 (136) 2.02 (96) 2.56 (64)
7 4.16 (45) 0.23 (96) 2.21 (125) 5.08 (66) 2.19 (66) 2.67 (225) 5.66 (119) 3.66 (66)
8 3.13 (66) 7.71 (101) 0.55 (136) 6.14 (123) 3.75 (101) 7.33 (123) 0.44 (66)
9 0.94 (96) 1.94 (123) 0.35 (125) 4.14 (119) 0.97 (125) 1.11 (96)
10 6.17 (101) 1.64 (125) 0.76 (136) 2.49 (123) 15.97 (136) 13.09 (101)
11 2.67 (119) 0.67 (125) 0.05 (225) 6.03 (123)
12 3.98 (123) 1.34 (136) 7.51 (225)
13 0.80 (125) 0.52 (225)
14 1.51 (136) 0.52 (225)
15 0.44 (225)
Ces4 x Ces10 Ces4 x Ces11 Ces4 x Ces13 Ces4 x Ces14 Ces4 x Ces18 Ces9 x Ces10 Ces9 x Ces11 Ces9 x Ces13
1 3.69 (21) 6.34 (1) 3.00 (1) 7.06 (15) 3.71 (1) 7.79 (35) 6.85 (1) 4.21 (1)
2 9.54 (35) 1.94 (5) 2.43 (5) 1.01 (31) 1.63 (15) 3.89 (96) 16.80 (19) 9.80 (15)
3 0.98 (91) 5.05 (15) 1.50 (19) 2.89 (45) 5.61 (19) 2.74 (101) 4.19 (22) 7.67 (19)
4 3.82 (96) 5.42 (21) 10.13 (21) 0.72 (88) 3.23 (35) 6.22 (123) 2.17 (35) 2.04 (22)
5 2.96 (101) 5.20 (22) 2.13 (22) 0.58 (91) 2.69 (45) 8.28 (45) 0.17 (35)
6 0.30 (119) 1.53 (131) 4.59 (31) 1.97 (6) 2.70 (64) 2.64 (64) 3.54 (45)
7 1.35 (123) 1.90 (35) 0.76 (45) 6.27 (119) 2.81 (66) 0.44 (66) 4.36 (64)
8 1.94 (125) 0.33 (45) 0.65 (64) 5.67 (125) 1.52 (88) 0.11 (88) 1.74 (66)
9 0.17 (136) 1.25 (64) 0.98 (66) 2.32 (136) 1.38 (91) 0.06 (96) 1.56 (88)
10 0.18 (66) 0.18 (88) 5.27 (225) 1.78 (96) 8.51 (123) 9.34 (101)
11 0.00 (88) 0.40 (91) 6.84 (119) 4.47 (123)
12 0.50 (91) 6.20 (101) 6.54 (123) 4.15 (225)
13 0.24 (96) 1.84 (119) 1.12 (125)
14 5.23 (123) 4.75 (123) 9.26 (136)
15 0.58 (125) 0.48 (125) 4.99 (225)
16 1.65 (136) 4.07 (136)
17 3.54 (225)
Ces9 x Ces14 Ces9 x Ces8 Ces10 x Ces11 Ces10 x Ces13 Ces10 x Ces14 Ces10 x Ces18 Ces11 x Ces13 Ces11 x Ces14
1 14.29 (15) 6.31 (1) 2.53 (21) 9.19 (21) 0.90 (91) 12.5 (35) 3.53 (1) 1.76 (31)
2 4.57 (45) 8.02 (15) 7.68 (35) 1.68 (91) 7.38 (96) 2.47 (91) 1.90 (5) 2.54 (45)
3 0.38 (88) 10.04 (19) 0.06 (91) 1.37 (101) 2.49 (125) 4.30 (96) 2.56 (19) 3.23 (88)
4 3.70 (96) 2.85 (35) 7.20 (123) 5.43 (119) 4.82 (136) 4.77 (119) 8.73 (21) 1.83 (91)
5 10.42 (225) 5.99 (45) 3.04 (125) 1.47 (123) 3.88 (123) 8.57 (22) 7.89 (125)
6 1.79 (64) 1.00 (136) 2.15 (125) 3.93 (125) 0.90 (31) 3.78 (136)
7 3.81 (66) 4.15 (136) 7.02 (136) 1.90 (45)
8 1.46 (88) 2.79 (64)
9 2.36 (96) 1.30 (66)
10 5.84 (123) 0.30 (88)
11 7.48 (225) 5.42 (91)
12 4.75 (123)
13 2.00 (125)
14 1.73 (136)
Ces11 x Ces18 Ces13 x Ces14 Ces13 x Ces18 Ces14 x Ces18
1 4.99 (1) 7.69 (15) 3.40 (1) 7.52 (15)
2 2.82 (19) 1.71 (31) 0.06 (5) 3.74 (45)
3 2.84 (35) 7.29 (45) 3.08 (15) 0.63 (88)
4 2.72 (45) 1.48 (88) 4.14 (19) 5.94 (91)
5 2.14 (64) 0.79 (91) 143 (22) 3.23 (96)
6 1.91 (66) 8.56 (125) 3.21 (45) 11.50 (125)
7 1.68 (88) 4.49 (136) 0.50 (64) 11.96 (136)
8 2.25 (91) 2.17 (225) 2.12 (66)
9 4.49 (123) 1.82 (88)
10 0.59 (125) 1.85 (91)
11 5.79 (136) 7.13 (119)
12 5.60 (123)
13 1.63 (125)
14 5.70 (136)
15 1.52 (225)

Table 2. Values of maximum likelihood G-test for the hypothesis of independent segregation between pairwise loci (1:1:1:1) of Cariniana estrellensis.

Pairwise loci P value Pairwise loci P value
Ces01 x Ces02 0.00069 Ces04 x Ces13 0.00278
Ces01 x Ces04 0.00069 Ces04 x Ces14 0.10833
Ces01 x Ces09 0.20833 Ces04 x Ces18 0.12847
Ces01 x Ces10 0.00139 Ces09 x Ces10 0.60556
Ces01 x Ces11 0.00069 Ces09 x Ces11 0.84514
Ces01 x Ces13 0.03611 Ces09 x Ces13 0.09653
Ces01 x Ces14 0.26458 Ces09 x Ces14 0.32431
Ces01 x Ces18 0.06042 Ces09 x Ces18 0.00556
Ces02 x Ces04 0.08681 Ces10 x Ces11 0.43750
Ces02 x Ces09 0.61111 Ces10 x Ces13 0.01111
Ces02 x Ces10 0.19931 Ces10 x Ces14 0.08264
Ces02 x Ces11 0.00139 Ces10 x Ces18 0.85000
Ces02 x Ces13 0.09028 Ces11 x Ces13 0.01181
Ces02 x Ces14 0.03403 Ces11 x Ces14 0.17361
Ces02 x Ces18 0.06597 Ces11 x Ces18 0.41667
Ces04 x Ces09 0.16319 Ces13 x Ces14 0.02222
Ces04 x Ces10 0.20486 Ces13 x Ces18 0.00417
Ces04 x Ces11 0.00069 Ces14 x Ces18 0.52431

Table 3: Genotypic disequilibrium between pairwise microsatellite loci for Cariniana estrellensis adult trees.

Discussion

Confirmation of Mendelian segregation for individual loci was confirmed based on the expected 1:1 Mendelian segregation test. Independent segregation of alleles between different loci was performed through the linkage test based on 1:1:1:1 segregation, using genetic information of doubly heterozygous mother trees and observed segregation in progenies. We found that the nine loci assessed herein present Mendelian segregation and are not linked. Thus, these molecular markers developed by Guidugli et al. (2010) can be considered as genetic markers and our results support the hypothesis that they are not located in the same chromosome linkage group. However, genotypic disequilibrium was detected between four pairs of loci for adults. Genotypic disequilibrium is largely caused by genetic linkage, natural and artificial selection, genetic bottleneck, founder effect, and genetic drift (Hartl and Clark, 2010). Among these, genetic bottleneck and genetic drift can be the result of forest fragmentation due to decreases in effective population size, resulting in a limited number of pollen donors participating in reproduction. In studying a different population of the same species, Guidugli et al. (2010) found no significant genotypic disequilibrium between the same pairwise loci assessed herein. Thus, the genotypic disequilibrium that we detected may be attributed to genetic drift caused by forest fragmentation in the study region. Studies on other tree species have also found an absence of genetic linkage with a presence of genotypic disequilibrium, including Araucaria angustifolia (Medina-Macedo et al., 2014), Copaifera langsdorffii (Tarazi et al., 2010), Cariniana legalis (Tambarussi et al., 2013), and Genipa americana (Manoel et al., 2015). The nine microsatellite loci evaluated in this study exhibit Mendelian inheritance, are not linked, and segregate independently. These loci are therefore suitable for population genetic analyses, which can generate precise estimates of genetic diversity, spatial genetic structure, mating system, and contemporary gene flow for C. estrellensis.

Acknowledgments

Research supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; Project #2014/02675-8) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors would like to thank FAPESP for financial support provided to T.Y.K. Kubota (Scholarship #2014/02675-8) and CNPq for research funding to A.M. Sebbenn. We also extend a special thank to Universidade Estadual Paulista/UNESP and to Dr. Evelyn Nimmo for her correction of the English in the manuscript.

About the Authors

Corresponding Author

T.Y.K. Kubota

Departamento de Fitotecnia, Tecnologia de Alimentos e Sócio Economia, Faculda, Universidade Estadual Paulista, Ilha Solteira, SP, Brazil

Email:
thaisayuriko@yahoo.com.br

References

  • Carvalho PER (2003). Espécies Florestais Brasileiras: recomendações silviculturais, potencialidades e uso da madeira. EMBRAPA-CNPF, Colombo.
  • FAO (2002). Panel of Experts on Forest Gene Resources. Ninth Session. Food and Agricultural Organization of the United Nation, Rome.
  • Gillet E and Hattemer HH (1989). Genetic analysis of isoenzyme phenotypes using single tree progenies. Heredity 63: 135-141. http://dx.doi.org/10.1038/hdy.1989.84
  • Goudet J (1995). FSTAT (Version 2.9.3.2.): a computer program to calculate F-statistics. J. Hered. 86: 485-486. http:// dx.doi.org/10.1093/oxfordjournals.jhered.a111627
  • Guidugli MC, Campos T, Souza ACB, Feres JM, et al. (2009). Development and characterization of 15 microsatellite loci for Cariniana estrellensis and transferability to Cariniana legalis, two endangered tropical tree species. Conserv. Genet. 10: 1001-1004.http://dx.doi.org/10.1007/s10592-008-9672-4
  • Guidugli MC, Accoroni KAG, Mestriner MA, Contel EPB, et al. (2010). Genetic characterization of 12 heterologous microsatellite markers for the giant tropical tree Cariniana legalis (Lecythidaceae). Genet. Mol. Biol. 33: 131-134. http://dx.doi.org/10.1590/S1415-47572010000100022
  • Hartl DL and Clark AG (2010). Princípios de genética de populações. 4th edn. Editora Artmed, Porto Alegre.
  • Leite EJ (2007). State-of-knowledge on Cariniana estrellensis (Raddi) Kuntze (Lecythidaceae) for Genetic Conservation in Brazil. Res. J. Bot. 2: 138-160. http://dx.doi.org/10.3923/rjb.2007.138.160
  • Medina-Macedo L, Lacerda AEB, Ribeiro JZ, Bittencourt JVM, et al. (2014). Investigating the Mendelian inheritance, genetic linkage, and genotypic disequilibrium for ten microsatellite loci of Araucaria angustifolia. Silvae Genet. 65: 234-239.
  • Manoel RO, Freitas MLM, Tambarussi EV, Cambuim J, et al. (2015). Mendelian inheritance, genetic linkage, and genotypic disequilibrium at microsatellite loci in Genipa americana L. (Rubiaceae). Genet. Mol. Res. 14: 8161-8169. http://dx.doi.org/10.4238/2015.July.27.4
  • Moraes MA, Kubota TYK, Silva ECB, Silva AM, et al. (2016). Mendelian inheritance, linkage, and genotypic disequilibrium in microsatellite loci of Hymenaea stigonocarpa Mart. ex Hayne (Fabaceae-Caesalpinioideae) Genet. Mol. Res. 15: gmr15038629.
  • Prance GT and Mori SA (1979). Lecythidaceae - Part 1: The actinomorphic-flowered New World Lecythidaceae. Fl .Neotrop. Monogr 21: 1-270.
  • Sokal RR and Rohlf FJ (1981). Biometry: the principles and practice of statistics in biological research. Copyright Ltd., New York.
  • Tambarussi EV, Vencovsky R, Freitas MLM and Sebbenn AM (2013). Mendelian inheritance, genetic linkage, and genotypic disequilibrium at nine microsatellite loci of Cariniana legalis (Mart.) O. Kuntze. Genet. Mol. Res. 12: 5442-5457. http://dx.doi.org/10.4238/2013.November.11.6
  • Tarazi R, Sebbenn AM, Mollinari M and Vencovsky R (2010). Mendelian inheritance, linkage and linkage disequilibrium in microsatellite loci of Copaifera langsdorffii Desf. Conserv. Genet. Resour. 2: 201-204. http://dx.doi.org/10.1007/ s12686-010-9230-5

Keywords:
Download:
Full PDF