Optogenetic approach improves neuroregenerative potential of stem cell-based therapies
Received: June 04, 2021
Accepted: June 18, 2021
Published: June 25, 2021
Genet.Mol.Res. 20(6):
Keywords
Oligodendrocytes; Optogenetics; Neurodegenerative cells
Description
Optogenetics stimulation represents a promising approach for regulating neural fate and improving therapeutic outcomes. Optogenetics integrate optical and genetic methodologies to allow precise spatial and temporal control of specific cell populations. Optogenetics stimulate neural differentiation via depolarization and Ca2+ influx in stem cells [1,2].
In 2010, Weick et al. represented that, hESC-derived neurons are fully competent to excute functional neural networks in vivo [3]. Further studies represent that, optogenetics stimulation induces differentiation of stem cells into different neural cell lineages such as, oligodendrocytes, astrocytes, inhibitory neurons and excitatory neurons (Table 1).
Cell source | Optogenetics tools | Neural markers expression | In vivo study | Year | Reference |
---|---|---|---|---|---|
Embryonic stem cell (ESC). | Channelrhodopsin-2 (ChR2) | -Synapsin-1 | Injection of cells to mice lateral ventricle | 2011 | [3] |
Mouse ESC | ChR2 | -Nestin -β-3-tubulin |
Injection into the rat motor cortex | 2012 | [4] |
C17.2 neural stem cell line | ChR2 | -Nestin | - | 2014 | [5] |
Glial progenitor cells |
ChR2 | -Galactocerebrosides (GalC) -Glial fibrillary acidic protein(GFAP) |
Injection into mice dorsal column | 2017 | [6] |
Human induced pluripotent stem cell (hiPSC) | ChR2 | -beta-tubulin (Tuj1) -γ-aminobutyric acid B receptor 1(GABA-B-R1) -GFAP -vesicular glutamate transporter 1 (vGlut1) |
- | 2017 | [7] |
Schwann cells | ChR2 | -Tuj1 -S100B |
- | 2019 | [8] |
ESC | ChR2 | -Tuj1 -PDGFRα -GFAP -MAP2 -synaptophysin -vGAT -vGLUT1 -vGLUT2 -GAD1 -gamma aminobutyric acid (GABA) -oligodendrocyte transcription factor 2 (Olig2) |
Injection into the rodent frontal neocortex | 2019 | [9] |
Mouse ESC | ChR2 | -vGlut -GAD-65/67 -NeuN |
- | 2020 | [10] |
Human dental pulp stem cells | ChR2 | -Nestin -Doublecortin -MAP2 |
- | 2020 | [11] |
Neural stem cell line | step-function opsin (SFO) | -NF200 | - | 2020 | [12] |
Rat spinal cords neural progenitor cell | ChR2 | -Nestin -β-3-tubulin -Olig2 -GFAP |
- | 2021 | [13] |
Table 1: literatures focused on neural differentiation of stem cells by optogenetics stimulation.
In 2021, we reported that, cell membrane depolarization by optogenetics tools induced growth, proliferation and retinal neural differentiation in Opto-mGluR6 mouse retinal pigment epithelium cells (mRPE) and bone marrow mesenchymal stem cells (BMSCs). mRPE and BMSCs were selected for optogenetics study due to their capability of differentiation into retinal-specific neurons. This study revealed that, optical stimulation-induced inward currents and Ca2+ influx in Opto-mGluR6 engineered BMSCs and mRPE cells. Optogenetics stimulation-induced G1/S transition and cell-cycle progression in BMSCs culture. Differentiation into ganglion cells, horizontal cells, amacrine cells, photoreceptors, bipolar precursors, and Müller precursors were sensible in treated BMSCs cultures. While, mRPE cells revealed dominant differentiation into the Müller glial cells [14].
Eye formation in the human embryo begins at approximately the third week in embryonic development, and continues through the tenth week. So, it seems that, integral differentiation occurred during 40 days.
Retinal progenitor cells unidirectionally produce all types of retinal cells (Figure 1). Retinal ganglion cells are the first type of the retinal cells that arise. Horizontal cells, cones, amacrine cells, rods, bipolar cells and Müller glia are progressively generated later [15].
In our previous research, we surveyed for about 43 transcription factors that are crucial in differentiation pathway of progenitor cells into the retinal neurons (Figure 1). The data demonstrated that, in Opto-mGluR6 engineered BMSCs culture; ganglion cells’, horizontal cells’ and amacrine cells’ specific markers were dominantly expressed. Accordingly, retinal differentiation seemed to be not occurred for all the neuroretinal cell types. It is suggested to pursue the optogenetics stimulation for at least 40 days to achieve to the more versatile terminal differentiation in treated cultures.
In Opto-mGluR6 engineered mRPE cell culture, Müller glial cells specific genes were dominantly expressed (Figure 2). It seems that, integral differentiation was occurred in the culture. To confirm this hypothesis, gene expression analysis should be pursued during 5 consecutive days.
In neuroregeneration, human pluripotent stem cells (hPSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine due to their capacity to differentiate to neuronal cells and integrating into the host retinal tissue [16]. Therefore, they hold promises in future applications of optogeneticS stimulation to develop efficient methods in retinal neural differentiation.
Human clinical trials represent that, cell replacement/transplantation can be used to prevent blindness and to restore eyesight in retinal disorders (NCT02320812, NCT02464436, NCT03073733). The results
represent that; retinal cell translation is an effective therapeutic strategy to treat retinal degeneration. Optogenetically induced differentiated cells can be transplanted in to the subretinal space of murine mouse models to determine whether they can survive and integrate into the retinal layer and mediate light responses in the eye.
The retina contains highly organized networks of neuron cells arranged in three dimensions (3D). Furthermore, generation of retinal neurons in 3D requires bioactive scaffolds leading to a functional neural network that imitates those in the human eye. In order to overcome retinal degenerative disorders, generation of functional neuronal retinal cells in three-dimension (3D) in syntax with optogenetics targeting is a cuttingedge strategy [7]. This strategy not only aimed to retinal disorders, via tissue implantation, but also it would be a promise as an in vitro model for drug screening. So, f 3D culture microenvironment can be recruited to improve survival and differentiation potential of retinal cells in vitro or optogenetically engineered cells’ transplantation in vivo. Bruch’s membrane (BM) is a specialized basement membrane which transports nutrients to the retina. Substrate that are designed to mimic BM represent pivotal demand, regarding neural integration in the host retina. Phase 1/2a clinical study demonstrated that parylene membrane substrate which had been used for cell therapy of five patients with advanced AMD improved visual function reasonably (NCT02590692) [17]. Several other clinical trials represented that, PLGA (NCT04339764) polyethylene terephthalate (PET), collagen (UMIN000011929) scaffolds may be used in the near future for the treatment of AMD [18]. These scaffolds can be studied in directed research for transplantation of optogenetically engineered.
cells in mice models of retinal degeneration to monitor their circuit-generating effects with physiological strategies.
Conclusion
Cell membrane depolarization by optogenetics tools may induce proliferation and neuron differentiation. Our previous research confirmed retinal neural differentiation of Opto-mGluR6 engineered BMSCs and mRPE cells by optogenetic stimulation. Studying optogenetics stimulation during different period of times, using different stem cell sources, generation of retinal neurons in 3D microenvironments, cell transplantion in to the subretinal space of murine mouse models may open new horizons in retinal regenerative researches.
About the Authors
Corresponding Author
Zahra-Soheila Soheili
Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Pakistan
- Email:
- soheili@nigeb.ac.ir
References
- Joers V.L. and M.E. Emborg, Preclinical assessment of stem cell therapies for neurological diseases. ILAR Journal, 2009..
- Giraldo, E., Optogenetic Modulation of Neural Progenitor Cells Improves Neuroregenerative Potential. International Journal of Molecular sciences
- Weick, J.P., Functional control of transplantable human ESC-derived neurons via optogenetic targeting. Stem Cells, 2010
- Stroh, A. Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells, 2011.
- Wang, S.J., Effect of Optogenetic Stimulus on the Proliferation and Cell Cycle Progression of Neural Stem Cells. The Journal of Membrane Biology
- Ono, K., Optogenetic control of cell differentiation in channelrhodopsin-2-expressing OS3, a bipotential glial progenitor cell line. Neurochem Int
- Lee, S.Y, Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters. J Tissue Eng Regen Med, 2019.
- Jung, K., Optogenetic stimulation promotes Schwann cell proliferation, differentiation, and myelination in vitro. Scientific Reports, 2019.
- Ryu, J,Optogenetically transduced human ES cell-derived neural progenitors and their neuronal progenies: Phenotypic characterization and responses to optical stimulation. PLoS One
- Pagan-Diaz G.J.Modulating electrophysiology of motor neural networks via optogenetic stimulation during neurogenesis and synaptogenesis. Scientific Reports
- Niyazi M., Neurogenic differentiation of human dental pulp stem cells by optogenetics stimulation. Journal of Chemical Neuroanatomy
- Teh D.B.L., Driving Neurogenesis in Neural Stem Cells with High Sensitivity Optogenetics. NeuroMolecular Medicine, 2020.
- Giraldo E,, Optogenetic Modulation of Neural Progenitor Cells Improves Neuroregenerative Potential. International Journal of Molecular Sciences, 2021.
- Shams Najafabadi, H.., Optogenetic control of neural differentiation in Opto-mGluR6 engineered retinal pigment epithelial cell line and mesenchymal stem cells. J Cell Biochem, 2021.
- Reese, B.E., Development of the retina and optic pathway. Vision Research, 2011.
- Kolagar, T.A, Human Pluripotent Stem Cells in Neurodegenerative Diseases: Potentials, Advances and Limitations. Curr Stem Cell Res Ther, 2020.
- Kashani, A.H.., A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med, 2018.
- Nair, D.S.R., Tissue Engineering Strategies for Retina Regeneration. 2021.
Keywords:
Download:
Full PDF- Share This